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ABSTRACT
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" We consider:the problem of computing the stationary flows of a

[
viscoelastic fluid flowing through a given domain. The proposed numerical
method is based on optimal control techniques, which replace the original
equations of the problem by a minimization problem to be solved by a descent
method. Such tecnniques are very powerful and can handle equations which

change type, provided that, as done here, one uses an adequate preconditioning

strategy and that one computes efficiently the gradient of the function to be
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SIGNIFICANCE AND EXPLANATION

We consider the problem of computing the stationary flows of a
viscoelastic fluid flowing through a given domain. The proposed numerical
method is based on optimal control techniques, which replace the original
equations of the problem by a minimization problem to be solved by a descent
method. Such techniques are very powerful and can handle equations which
change type, provided that, as done here, one uses an adequate preconditioning

strategy and that one computes efficiently the gradient of the function to be

minimized.
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I.'. OPTIMAL CONTROL TECHNIQULS FOR COMPUTING
Q! STATIONARY FLOWS OFf VISCOELASTIC PLUIDS

Patrick 1e Tallec*

, 1. INTRODUCTION
B The objective of this paper is to present from a2 basic numerical
-7 point of view a new class of methods for the numerical calculation of
5: viscoelastic flows. These methods consist in :
\
{; (i) rewriting the governing equations as a least-squares problem.
’ Here, it is critical to use the right norms and to introduce
€] a preconditioning operator. For example, working with the quan-
a tities fn ldiv a-£ |2 dx is completely inadequate and is wrong
P from a functional analysis point of view. In this paper, the
{ preconditioning strategy will rely on the introduction of a pi-
’ vot space;
F' (ii) solving the resulting minimization problem by a Finite Element
% Method associated to a conjugate gradient or to a Quasi-Newton
§ algorithm.
!
This paper first introduces the governing equations of the problem
t (§2) and rewrites them as a least-squares (or optimal control) problem
% (§3) .The practical calculation of the cost function and of its gradient
o is then discussed (§4) and several descent methods for solving the resul-
L ting minimization problem are presented (§5). Some details on the ﬁractical
" implementation of these ideas and numerical results are finally presented
X (86 and §7).
3
: .
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‘;.:;‘ The framework of the paper will be rather gemeral and could be used

fgg for the derivation and the study of different classes of numerical methods.
:;’:, Moreover, although introduced on a standard steady state problem, it can

aa be easily adapted to the solution of true evolution problems, of pseudo

;; evolution problems (time marching techniques) or to an arc length continua-
e tion approach (GLOWINSKI [ 1984, p.206 ]). In any case, in the proposed methods,
iié {; approximation errors can be made very small and change of type in the gover-
;r ’ ning equations should not be damaging as seen from the analogy with transonic

flow computations.

2. EQUATIONS OF THE PROBLEM

Let us consider a viscoelastic fluid (say of upper-convected Maxwell
o6 type), flowing viscously through a given domain © (Fig.1). We suppose that
Q no slip occurs along the solid walls and that the fluid velocity at the

entrance and at the exit of the domain is given.
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Figure 1 - The physical problem
{out of Malkus [1984])
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For example, such situations arise while studying plane flows over
slots, such as those studied experimentally by Bird and al, [ 1982 ]. The
equations governing such situations are simply :

(1)  EQUILIBRIUM

-div(g) + p(u*V)u=f inQ,

(2) CONSTITUTIVE LAW (upper—convected Maxwell)

HUEE) - yar

g (xt)-[ u—zexp(

- A
< axt(z,r)
Ec(z'f) - ax ’

Xt(x,f) = position at 7 of the particle which is in x at time

t and vwhich is subjected to the velocity field u.

(3) KINEMATIC RESTRICTIONS

divE'O, u=u, onTl .
Above, u represents the fluid velocity, o the Cauchy stress tensor, p a
hydrostatic pressure, p the fluid density, u the fluid viscosity and )
the relaxation time. Observe that, as an extra boundary conditiom, the
constitutive law (2) requires the knowledge of what happened to the fluid

before it enters the domain.

It has been observed in Joseph, Renardy, Saut [ 1984 ], that these
equations change type when the viscoelastic Mach number U/vi/Ap reaches 1

(U is a characteristic velocity of the considered flow). Real characteristics
then appear along which the vorticity can be discontinuous. However, most

numerical methods employed for solving (1)-(3) (such as the classical fixed

point method solving iteratively for the velocities and then for the stresses)

cannot handle this change of type.
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.{{:” The idea of this paper is to employ for the numerical solution of
::§ (1)-(3) optimal control techniques in a dual space, which were used with
;’:" success in transonic flow computations (GLOWINSKI [1984 ]), where a similar |
i change of type occurs.
l%?"i 1
,% 3. LEAST-SQUARES FORMULATIONS OF THE PROBLEM.
) 3; 3.1. A one-dimensional model problem. Let f : R + R be differentiable
i?;f;! and consider the problem of solving numerically the nonlinear equation
1§ £(x) = 0 .
: If it has a solution in R, then this equation is equivalent to
0
L Minimize ilf(x)l2 over R, (a>0),
I
';-Cj problem which can be numerically solved by the gradient algorithm
.-t:
A .
+ x, = given ,
:.lf '
; ;.{ + for n =0 until satisfied set .
o
: ae1 T *n T % f(xn)f'(xn) :
i 4
. .,.. This algorithm can be a very efficient method for solving f(x) = 0, provided
"“‘,:: that a is properly chosen and that f(x)f'(x) is easy to compute. It will be
b ’:‘-’ the basis of the numerical technique that we will use to solve (1)-(3),.
L
= 3.2, Maxwell viscoelasticity in primal variables. Let V be the space
s"; for the unknown velocity. Here, we take
o Velwe R @ , dive=0),
§ ~ ~0 ~

whose topological dual we denote by V*, Let us also introduce the auxiliary

:: unknown z = Pu, P being a given isomorphism from V onto a Hilbert space H,

‘\‘ H with scalar product (.,.) and H identified to its dual. The interest of

AN . the auxiliary unknown is that, for P properly chosen, the viscoelastic pro-

- blem may be better conditioned with respect to this new unknown, and )
o -4-
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) therefore easier to solve numerically. In other words, P is a precon-

g .

;% ditioning operator. For example, one can think of defining P u as curl ~
u, H as the image of V by P and (.,.) as the L? scalar product. The )

§§ vorticity curl y will then be the primary variable, which might be a
very good choice because vorticity is the canonical variable appearing

;u in the analysis of change of type. Another choice of P, for which again

3‘: PTP is equal to the Stokes operator, will be proposed at the finite element

3

' level in §5.
ot
L)

Finally, once V and P defined, let us introduce
L:V+R, LW =g £y,

e T: V-V,

< T(u),¥>= In{o(g-y)g-g + %g (). (Yw + lvf)} dx ,

- o
PR S

e

VWE€V, u-= utu, gn(g) being given

through the constitutive relation (2).

N ) With these notations, summarized in the following diagram

. T

‘ v —> V* 3 L :

I
PT

‘:C

\ H
-"

- equations (1) to (3) take the form
i

4

(4) T(g-gl)-L-OinV*, 4-u, EV .

SN

If (4) has a solution, then it is obviously equivalent to the H least-

r squares formulation :
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:‘é
A0
N
w0 MINIMIZE  J(y) = 3 (By(v), Py(y)) OVER &
Vol
34 WHERE y(v) €V IS THE SOLUTION OF THE LINEAR PROBLEM
. (5) (By(w), P@)=<T(F 'y),5>-L(w), WEV.
W
5
;Qﬁ Indeed, if (4) has a solution u =u-y,, and if we set v = z= P(Eo)
b in (5), then the right-hand side of (5) is equal to zero, thus the asso-
e ciated state vecfor ngo) is'a%s? equal to'zero and thefefore J(Eo) i?
W equal to zero. Since, by definition, J(.) is always positive on H, this
.::: implies that z, is a minimizer of J over H.
0N
'g}f Conversely, let Z, be a minimizer of J over H. As seen above, since
(4) has a solution, J attains the value O on H and therefore J(z ) must be
p. - equal to O. By def1n1t1on of J, this can only happen if zfz ) is equal to O,
6%" that is if T(P~ z )-L=0 in V¥, which means that P l(go) is then a solution
5 of (4).
o
. In summary, if we assume the existence of a solution to our original
; \ problem (1)-(3), we can replace these equations by the equivalent minimiza- ‘
h tion problem just written above. This minimization formulation is the ome
gat which will be used in our numerical techniques. It reduces our initial pro-
‘ blem to an optimal control problem, if we identify v to a control variable,
t'kd Y to a state vector, (5) to a state equation and J(+) to a cost function.
'ii
3 Here, the state vector belongs to the velocity space, which relates
WY to some extend this formulation to the one used by TANNER [ 1985 ], or by the
R other authors for which the velocity is the working variable.
&iz‘ 3.3. Arclength continuation in mixed variables, To illustrate the
R e, many directions in which the above optimal control framework can be applied,
a?: we will briefly and formally discuss another least squares formulation of

problem (1)-(3). It is based on the approach of CROCHET and al { 1985] or of

iﬁﬁ BERIS, AMSTRONG and BROWN { 1985 ], among others, in which the original pro- .
ixﬁ blem is written in mixed variables (velocity + added stress) and is put in-
i?ﬁ side an arclength continuation framework.
P‘. _6_
s,
iz
RO,
(&)
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With the notations of §3.2, let us first introduce the space L of
added-stress fields, the space X of trial functions and the operator 'Im

from Rx V x I into V* x X*, respectively defined by

T ={1€ (@), 1=0 on T},
X = {1€ E‘(Q), 1=0 onT*},

I (resp. I'*) = {x €T, (x).n(x)< 0 (resp.>0)},

QT 0,808,000 =gl (0 (W DumD w43 g (st
* g9 (AEDIATY'T - AEw) + (g - u (T + TgH)-Dax
'nﬂ ~~

+f _A\T.g, u.nda, ¥Wg,JJEV=XX,
r

with u = YotHL gt ¢t uggﬂg'r}, u and gy corvesponding to the

given boundary velocities and input acdded stre=ses.

Now, following the strategy of CROCHET [ 1985 ], writing the constitutive
law under a differential form and . integrating by parts, the arclength conti-
nuation problem associated to (1)-(3) can be written :

(Fi‘nd {Eo,go,k}:lo,sl + VxZI xR such that :

A(0)=0, 20(0)-0, 20(0)4»2'1 = Stokes solution;

(6) <
< T (0 (8),u (s),g _(s)), (¢,1)>=0,¥ {y,1} €V x X, ¥s €[0,5];
d L N
L ﬁ(P MH * 5(20)‘“1(9; ( )\) =t

After discretization in s, we obtain

-7-




( ¥n>0, find {2;‘22 A"} €V xI xR such that

n
< T, 0040, (@n) > =0, ¥ iyl €Vxx,
n- n—l n

2
n = n _ B
Pog ~Puy WPy “Pu ) mg 0% "% )

12
{ + A" =" )" = as?2

from which we derive our final least-squares formulation of the arclength

continuation problem

¥ n>0, Minimize the cost function (residual dual norm)

u2

N

1 1
A R

over the control space R x H x I, the state vector (residual) {y,o*,u}

(7)) in V x X x R being defined through the state equation

=1
(PX’Pz)H + (2.".3)&1 =< Tm()‘)P zo.go).(}j.z)>, V{,‘!”L} €V xX,

3 )2—(z -z z“-1 zn-z)-(a -o“.1 cn-l—an-z)
k ~ ~ '~ ‘'~ ~0 ~0 ‘A0 Ao °

Observe that (7), as it must do, deals with the right dual norms of the
residuals, and that it is in fact equivalent to the standard discretiza-

tions of (6) used in the litterature.

4, CALCULATION OF THE COST FUNCTION AND OF ITS GRADIENT

The minimization formulations of §3, although equivalent to classical
ones, are very interesting because they can be solved by a different class of
stable numerical algorithms. Indeed, any available descent method {(conjugate
gradient, Buckley-Lenir, Quasi-Newton...) can be successfully used for their

numerical solution. The practical implementation of such methods only requi-

res the knowledge, at given controls y, of the cost function J(v) and of its
gradient J'(v).
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Now, the cost function being a quadraticfunction of the state vector,
the latter being the image of a nonlinear complicate operator acting on the
control vector, the computation of J or of J' is not an easy matter. Never-
theless, even in the more complex situation of §3.2, and unlike a classical
Newton method which would require o) operations (N=dim V) to compute this
gradient, the computation of J' can be done in O(Nz) operations by introdu-
cing an adjoint state vector which reduces this computation to the explicit
integration of functions locally defined on the support of each trial func-
tion.

To see that, in the framework of §3.2, let us introduce the adjoint
state E(X.) defined as

t - - - -
® WGt =1 expC5 E ) D@ E, (k) ,

with
( 1 T
D=3 @yl + @y ) if x€q,
D=0 if x£Q,

OR

- X
E‘t (5,7) = E (?\(4’1) »

Xz(g,f) = position at time 7 of the particle which

\ .. . . . .
is in x at time t and which is subjected

to the velocity field 2,-(5) = ~u(x).

This adjoint state can be computed by an explicit integration along the

trajectories of EfP— (!)*21' Then, we can prove

THEOREM : The gradient J'(y) is_the solution of the linear problem

oy ', Bw) = é pl(u.Du + (u.Vw}.y(¥)dx
T T
S h@e e T 2 E0g, * A0 - Mgy LW dx, ey,
Proof : By definition of the gradient, we have

@'(@,z) = lim L [I(y + £2) - J] = (By, P6Y)
-0

-9-
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w g e

5
i
i vhere y = x(x) is the solution of the state equation (5) and where 62
is obtained from z by differentiation of (5), that is by solving ¢
2%
) a1
(Psy, Pw) =<T'(P .Y.)'P Z, ¥, VxEV .
a
LA
iy Substituting this definition of 8y in the expression of the gradient,
we get
&
& 1] ] -1 -1
p J'(v),2) =<T'(P v.P oz, y>.
544 .-l L L
Denoting P z by w, and from the definition of T(.), this gives
;f, ,
.:;3 an @', Rw) = {!{p(g.z)g + p(u.Qw}.ydx +J;z [g,l')(g)-gl-g(x)dz ,
3
r '
0{ with D(y) = -%- (Vx- + VxT). In (11), to compute the action of the derivative
[ ‘ ~ o~
&+ of 20(5) on w, we differentiate the constitutive law (2), first with
;‘&‘ respect to time, then with respect to the velocity u. We obtain
ey
\' ( T = 24')(2) .w satisfies the differential equation

N (@DL - @z Lo’ v

e (12)

o N _ T

™ = D(W) ~ ME.Dg, (W) + AW, (W) + Ag (W) W),

e

o - .

L ‘r~=0 on T (-partofl‘wlthm -n<0).

IR

: On the other hand, by differentiating the adjoint state equation (8)

‘,‘.2 with respect to time, we have

# (13 T.p(dx=f T-A(@AG - AEWTC - Ae@Ww + Glax .
Q Q

-"ﬁ'
%o a5

Integrating (13) by parts, and taking the incompressibility constraint

div u = 0 into account, (13) yields

praaals

{

[ TR@ax 6.0 DL - AW - 2 @wT + T lax
Q ~ ~ ~~ ~

Ty &

s

~:’ which from (12) is equivalent to

‘.

7" T .
e (14) JQL'R(X.)"Z‘, - {lg.{Zug(g) = A(.0g, + A @Wg, + Mg, (Tw) ldx .
> -10-
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Plugging (14) back in (11) finally gives (10) and our proof is complete. 0O

With this theorem, the computation of J(!) and J'(x) reduces to the

following sequence of operations.

'
(i) Solve Pus=y inH,!EV;

(ii) Compute gn(ky}u) by integration of the comstitutive law (2) ;

(iii) Compute the right-hand side I of the state equation (5);

(iv) Compute the state vector Y by solving the linear problem (5) ;
) 3= By, BP=3<E, x> ;

(vi) Compute the adjoint state G by integration of (8);

(vii) Compute the right-hand side J of the gradient equation (10) ;

(ix) Compute J'(v) by solving the linear problem (10).
\
In summary, for the least squares formulation (5), the computation of J and

of J' requires two integrations in time and the solution of four linear problems

associated to the fixed operators P or PT.

5. A TYPICAL CHOICE FOR THE DESCENT METHOD AND FOR THE PRECONDITIONING
OPERATOR

We still consider the framework. of §3.2 and we now suppose that V is
approximated by a finite dimensional space Vh with basis (sk)i-l,N, to which

we associate the matrix. L
A=A ) N, G, Aij-Inz W D(g;) -R(g;)dx .

We then define P as the Choleski factorization of A (PTP-A, P lower trian-

gular), H as RN and (.,.) as the canonical scalar product on RF . i

With this choice of P and H, the minimization problem (5) can be

solved by the standard Polak Ribidre conjugate gradient method given below :

~11-
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i
o x x? given ;
[
? © = J'(v®) as computed in §4 ;
R b 4 5 v a p H
|
]
bl x w=g’;
.E‘gﬁ
‘é’ for n»0, with v® and w" known, and until satisfied, do z s
;" x solve J(v* - p WM< Jv" - pun), ¥ER, p ER,
3 | ~ m ~ ~ n
0
k]
(use quadratic interpolation, for example)
” <
;‘?‘ vn+l L
:‘\, x ~ ~ pn~ ’
L7
' 2 n+l ' n+! .
:’k x B = J'(y ) as computed in §4 ,
- n+l n+l n , n+l  nel n n n .
= x ¥ =g +w (g ,g -glg,g).
.
}{H The numerical results given below were obtained by solving (5) with
"
o this Polak-Ribiére algorithm. To accelerate convergence, we have recently
replaced this algorithm by the one described in BUCKLEY and LENIR [ 1983],
?Q’ which begins by a few steps of a BFGS method and which then switches to a
{;3 conjugate gradient method using the last BFGS update of the Hessian as an
%23 additional preconditioning matrix. Again, the practical implementation of
}' this last method only requires the knowledge of J and J', as obtained from
: §4, and only involves the solution of linear systems which are associated
5 to fixed positive definite symmetric sparse matrices and which are thus
i@&' cheap to solve even for N large. On (5), this last algorithm gives compa-
[]
;a v rable results but appears more robust than the original Polak-Ribi&re me-
pJ
A thod.

6. NUMERICAL IMPLEMENTATION

In the framework of §3.2, the implementation on a computer of the tech-

niques of §4 and §5 requires the solution of two numerical problems :

(i) what type of approximation can be used for the space V of
velocity fields ?

(ii) for a given velocity field, what numerical technique can be used .
-12-
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for the integration in time of the constitutive law and of the adjoint

state equation?

Those problems are strongly interconnected since, for example, the fi~
nite element which is used determines the aspect of the computed trajecto-
ries. D. Malkus [ 1984] proposes answers which are very attractive because

they respect the physical structure of the problem. His technique decomposes

as follows :

(1)

choice of an exactly incompressible piecewise linear finite element

(such as the linear crossed triangle) for approximating the velocity field;

1

X 0‘0,9‘0 XXX DDIKDOIXDON
DEXIXDAX 4»"0 XX 0‘0 XIXDXAXIXIX

K
2

-

XD

O,

‘o XDXDAX DA DDA DRI
SR DX 0‘04»'0 cm
XIXDXDAX XD 0{0 TOYOZOTOTOZe
ZOZOZOTOZOTOTOTOTOTOTOTOZOZOTO

2
K
<

X
XD
D (

b

P

Mesh of the domain.

Figure 2 - Linear Crossed Triangles

(ii) exact computation of the trajectories incoming at the

DX qu DXAXDAXDIX] »}4 XX
XDXIXDAXDDDODIX

XIXD 0'4»,3)'0 OZOTY 0‘4» XD ODRXDCDDEIDINR 0‘0 XK
XIXDAXIXDDEX 0‘0"0 DAXDDDD OXEISIXIXTIXI XX DDA RDIGD

DAXDXDIX DX 4»"0 OXIXD
QXXX DR 4m> X
(X mo SXDXEXXDID K o'o 0,0 X
OZOTZOTOTOTOTOTOTOTOZOTOT0T

The original piecewise linesr
Finite Element made of four
linear crossed trisngles.

center of

each finite element through a piecewise analytical solution of the ordinary

differential equation

X (xv) = u (X (x,7)),

X, (%,€) = x

(iii) computation of the deformation gradient history by solving analy-

tically the equation

(X (%,7)) = %y X (x,0)]E, (X

-13-
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(iv) computation of the added stresses g, by a Laguerre type numerical

2
quadrature
t NT
go(gg,t)-L m, (1) [E ()] dr~ L Wrm (1)) (F (x,70)) .

r
The numerical quadrature of (iv) slightly changes the constitutive law
but respects its objectivity since the trajectories and deformation gradients
are exactly computed.

For a viscoelastic fluid with a more complicated differential constitu-
tive law, the Laguerre quadrature is replaced by a forward numerical integra-
tion of the constitutive law on the computed trajectories, using an automatic
time stepping strategy. In the case of an evolution problem, the integration
in (iv) is only performed between times tn and tn+l’ which is then much cheaper.

¢

In summary, if we use D. Malkus ideas, our numerical technique for the
solution of (1)~(3) finally reduces to

1) the transformation of the original equations (1)-(3) into an equiva-
lent minimization formulation (§3).

2) the solution of this minimization problem by a standard descent
technique (§5),

3) the approximation of the velocity fields by linear crossed - trianm-
gular finite elements (§6),

4) the construction of a preconditioning operator by a Choleski facto-
rization of the Stokes operator,

5) the numerical integration of the constitutive laws by a numerical

quadrature on the analytically computed trajectories (§6).

As described the method is expected to be stable, even if there is change
of type (this is typical of a dual least-squares approach), and accurate (ve-

ry little approximation appears in the integration of the constitutive laws). )

-14-
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Moreover, although mainly illustrated in the upper-convected Maxwell-
case, the method can be applied to any constitutive model which reduces
to a differential equation. In particular, for such models, the gradient
J'(.) can still be computed as in §4, simply by replacing (13) by the
transpogse of the differential equation defining 25(2) B

Nevertheless, the method appears to be very expensive, especially

in the steady case where almost all the computation time is used for
the exact calculation of the trajectories at a given velocity field. In
that respect, the mixed formulation of §3.3 appears more attractive

because there no such calculation is needed.

7, NUMERICAL RESULTS

We consider below the numerical study of the plane stationary flow

over a slot of an upper—convected Maxwell fluid. The domain and the boun-
dary conditions of the flow are those of Fig.l, and its associated Deborah
and Reynolds number are respectively De=.75 and Re=.86 10™*(Deborah number =
product of the fluid relaxation time by the shear rate of the incoming
fluid at the solid wall). The aspect of the streamlines inside the slot
and of the hydrostatic pressure profiles are represented on Fig.3 and 4.
The computation was done on a Cray !, with the finite element mesh
represented on Fig.2 (961 nodes), and using the Polak-Ribiére algorithm of
§5. Fifteen iterations were required for an execution time of 12 mn. More
than 95% of this time was devoted to the analytical computation of the tra-
jectories, to be done twice per iteration, This indicates that our stra-

tegy for the computation of the trajectories should be revisited in the sta-

tionary case, and that it may be better there to use the mixed formulations
of §3.3.
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